Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 1005, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1635617

ABSTRACT

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/immunology , Viroporin Proteins/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Tobacco/immunology , Tobacco/metabolism , Tobacco/virology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
2.
Angew Chem Int Ed Engl ; 59(43): 18885-18897, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-642379

ABSTRACT

The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/metabolism , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Vaccines, DNA/immunology , Vaccines, DNA/metabolism , Vaccines, Inactivated/immunology , Vaccines, Inactivated/metabolism , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL